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1  |  INTRODUC TION

Biodiversity is under tremendous pressure in the Anthropocene 
(Johnson et al.,  2017; Sullivan et al.,  2017). Habitat loss (e.g. de-
forestation) and fragmentation have undoubtedly driven species 
declines and extinctions (Dirzo et al., 2014; Young et al., 2016), but 
even subtle changes in temperature, resource availability, noise or 
light pollution caused by human modification can contribute to de-
clines (Alberti, 2015; Hamer & McDonnell, 2008; Imhoff et al., 2010; 

Perry et al., 2008; Shannon et al., 2016). Species either need to adapt 
with anthropogenic environmental changes or continue to decline.

Some species have successfully adjusted their behaviours to 
cope with novel selection pressures (Lowry et al.,  2013; Merckx 
et al., 2021; Sih et al., 2011). These include changing active hours 
or nesting locations to avoid humans and novel predators (Tagg 
et al., 2013), and taking advantage of new food sources (e.g. crops, 
human-provided food) or habitats (e.g. artificial wetlands; Ditchkoff 
et al., 2006; Sih et al., 2011). Some organisms have had life-history 

Received: 30 March 2022  | Revised: 2 July 2022  | Accepted: 7 July 2022

DOI: 10.1111/gcb.16367  

R E S E A R C H  A R T I C L E

Anthropogenic habitat modification alters calling phenology  
of frogs

Gracie Liu1,2  |   Richard T. Kingsford1  |   Corey T. Callaghan1,3,4  |   Jodi J. L. Rowley1,2

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Corey T. Callaghan and Jodi J. L. Rowley should be considered joint senior author.  

1Centre for Ecosystem Science, School 
of Biological, Earth and Environmental 
Sciences, UNSW Sydney, Sydney, New 
South Wales, Australia
2Australian Museum Research Institute, 
Australian Museum, Sydney, New South 
Wales, Australia
3German Centre for Integrative 
Biodiversity Research (iDiv) – Halle, 
Leipzig, Germany
4Faculty of Environmental Sciences, Czech 
University of Life Sciences Prague, Prague, 
Czech Republic

Correspondence
Gracie Liu, Centre for Ecosystem 
Science, School of Biological, Earth and 
Environmental Science, UNSW Sydney, 
Sydney, NSW, Australia.
Email: gracie.liu@unsw.edu.au

Funding information
Australian Government; International 
Business Machines Corporation

Abstract
Anthropogenic habitat modification significantly challenges biodiversity. With its 
intensification, understanding species' capacity to adapt is critical for conservation 
planning. However, little is known about whether and how different species are re-
sponding, particularly among frogs. We used a continental-scale citizen science data-
set of >226,000 audio recordings of 42 Australian frog species to investigate how 
calling—a proxy for breeding—phenology varied along an anthropogenic modification 
gradient. Calling started earlier and breeding seasons lengthened with increasing 
modification intensity. Breeding seasons averaged 22.9 ± 8.25 days (standard error) 
longer in the most modified compared to the least modified regions, suggesting 
that frog breeding activity was sensitive to habitat modification. We also examined 
whether calls varied along a modification gradient by analysing the temporal and 
spectral properties of advertisement calls from a subset of 441 audio recordings of 
three broadly distributed frog species. There was no appreciable effect of anthropo-
genic habitat modification on any of the measured call variables, although there was 
high variability. With continued habitat modification, species may shift towards earlier 
and longer breeding seasons, with largely unknown ecological consequences in terms 
of proximate and ultimate fitness.

K E Y W O R D S
advertisement call, Australian frogs, bioacoustics, breeding season, citizen science, 
urbanization, vocal communication

www.wileyonlinelibrary.com/journal/gcb
mailto:﻿
https://orcid.org/0000-0002-3092-8825
https://orcid.org/0000-0001-6565-4134
https://orcid.org/0000-0003-0415-2709
https://orcid.org/0000-0002-2011-9143
http://creativecommons.org/licenses/by-nc/4.0/
mailto:gracie.liu@unsw.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.16367&domain=pdf&date_stamp=2022-08-10


    |  6195LIU et al.

changes, including altered breeding regimes, to align with changes 
in resource availability (Fleischer et al., 2003; Møller, 2009). Where 
reproduction is pushed into unfavourable periods, suitable breeding 
sites, mating opportunities, fecundity, and parent and offspring qual-
ity and survival can decline (Both et al., 2006; Dawson, 2008; Mayor 
et al.,  2017). Differences in temperature, rainfall, food availability 
and light disturbance between urban and non-urban environments 
can influence reproductive timing (Beck & Heinsohn, 2006; Deviche 
& Davies, 2014), driving, for example, earlier and longer mating and 
breeding in urban areas compared to rural areas (Hart et al., 2018; 
Møller et al., 2015). This may benefit some species where increas-
ing courtship and mating opportunities improve breeding success 
and fecundity (Halupka et al., 2021; Pröhl, 2003; Souza et al., 2021; 
Tarwater & Arcese, 2018). However, it is unclear how widespread 
phenological adjustments are among taxa inhabiting anthropogeni-
cally modified environments and what the implications are for spe-
cies' persistence.

For acoustically communicating species, communication (e.g. 
vocalizations) and signal detection may also be compromised in 
anthropogenically modified landscapes, with fitness consequences 
that compound the effects of habitat loss and degradation (Bee 
& Swanson,  2007; Francis & Barber,  2013; Laiolo,  2010). Traffic 
and urban noise can directly interfere with signal propagation 
(Cunnington & Fahrig, 2010); buildings and artificial structures can 
promote signal scattering, potentially lowering signal efficiency 
(Rabin & Greene, 2002; Slabbekoorn et al., 2007); and pollution can 
indirectly affect vocal activity and complexity (Gorissen et al., 2005). 
Furthermore, artificial lighting can alter biological rhythms and 
predation risk, affecting the timing and amount of calling (Baker & 
Richardson, 2006; Dominoni & Partecke, 2015; Fuller et al., 2007; 
Hall, 2016). As male advertisement calls drive sexual selection for 
many species, particular calling behaviour may be better adapted to 
maintain reproductive success (Cunnington & Fahrig, 2010; Neelon 
& Höbel,  2019). Many components of calls are under behavioural 
and physiological control, including call duration, repetition rate, 
dominant frequency and signal timing (Bee et al., 2000; Bosch & De 
la Riva,  2004; Byrne,  2008; Neelon & Höbel,  2019). Adjustments 
to these (e.g. calling louder, at higher dominant frequency, or at a 
different time of day) can reflect adaptions to evolutionary novel 
(e.g. noisy or high light pollution) environments (Brumm, 2004; Fuller 
et al.,  2007; Miller,  2006; Mockford & Marshall,  2009; Nemeth & 
Brumm, 2009).

Amphibians are affected by anthropogenically modified land-
scapes, including cities (Callaghan et al.,  2021), with relatively 
high proportions of threatened species among vertebrate taxa 
(Hoffmann et al., 2010; Rodrigues et al., 2014), but their adaptations 
to these environments remain largely unknown. Some frog species 
change their call frequencies, amplitude or call rate with anthropo-
genic noise (e.g. traffic or engine noise; Cunnington & Fahrig, 2010; 
Hoskin & Goosem, 2010; Parris et al., 2009; Sun & Narins, 2005), 
but these responses are species specific, with inconsistencies among 
species (Roca et al.,  2016; Sun & Narins,  2005). Our understand-
ing of amphibian behavioural responses to anthropogenic habitat 

modification largely comes from small-scale studies of calling (e.g. 
a single pond, or a single city; but see Mitchell et al.,  2020) or 
one anthropogenic variable (e.g. noise or light pollution; Shannon 
et al.,  2016). There is a need to understand the generality of re-
sponses to habitat modification across a range of species and their 
habitats using geographically broad data.

We used acoustic data from a continental-scale citizen science 
project (FrogID; Rowley et al., 2019) to investigate how anthropo-
genic habitat modification affected frog breeding and calling be-
haviour, across a range of species. First, we examined how breeding 
phenology changed along an anthropogenic modification gradient. 
This gradient was represented by a continuous index that quanti-
fied the intensity of land modification, from unmodified to highly 
modified, based on the presence of human stressors, including 
human settlement and agriculture (Kennedy et al., 2019). We used 
species' calling seasons as a proxy for their breeding seasons, given 
that calling is a precursor to frog breeding and vocalizations closely 
track breeding phenology (Hoffmann & Mitchell,  2021; Klaus & 
Lougheed,  2013; Larsen et al.,  2021; Willacy et al.,  2015). Then, 
we analysed calls from a subset of species to determine whether 
call characteristics changed along an anthropogenic modification 
gradient.

2  |  MATERIAL S AND METHODS

2.1  |  FrogID dataset

We obtained acoustic data from FrogID, an Australia-wide citizen 
science project based on audio recordings of frog advertisement 
calls (Rowley et al.,  2019). Citizen scientists submitted 20–60  s 
recordings, containing one or more species of calling frogs, via a 
smartphone application which recorded the location, date and time 
of recording. Experts validated each recording, identifying all call-
ing frog species. We collated data from 10 October 2017 to 19 May 
2021, excluding recordings with uncertain locations (i.e. accuracy 
>3  km; more stringent filtering, excluding recordings with accu-
racy >1  km, did not affect the results; Table  S1). Most recordings 
(96.8%) were accurate to ≤1 km, and 89.5% were accurate to ≤100 m 
(Figure S11).

2.2  |  Breeding phenology

We divided Australia into square grid cells per 0.1 degrees (∼11.1 km) 
of latitude and longitude and assigned each FrogID observation to a 
grid cell according to its location. Observations on the border of two 
grid cells (0.3% of records; 759/226,820) were assigned to both grid 
cells, but we also tested the effect of omitting these records and 
results were unchanged (Table  S1). We used Google Earth Engine 
(Gorelick et al., 2017) to calculate the average global human mod-
ification (GHM) index (Kennedy et al.,  2019) within each grid cell, 
as a proxy for the intensity of anthropogenic habitat modification 
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(Figure 1). The GHM index measures global human land modifica-
tion and is a continuous index ranging from 0 (no human impact) 
to 1 (high impact). It is based on 13 anthropogenic stressors within 
five major categories (human settlement; agriculture; transport, 
mining and energy production; and electrical infrastructure); it is 
strongly correlated with other common measures of anthropogenic 
impact including human population density and night-time lights (see 
Figure S7).

We removed duplicate FrogID records (observations of the same 
species from the same location [latitude and longitude] and date) 
and included only grid cells with at least 20 unique observations of a 
species, from across three or more days of the year (data aggregated 
across all years; Li et al., 2021). Most grid cells were considerably 
better sampled than this (average of 3.3 ± 2.4 species in each grid 
cell; each combination of species and grid cell had 79.2 ± 158.0 ob-
servations from across 38.5 ± 36.8 days; all values are mean ± stan-
dard deviation [SD]). We omitted species represented in less than 10 
grid cells from analyses. This threshold maximized our species sam-
ple size (42/204 [20.6%] species remained) while ensuring sufficient 
grid cells per species for statistical analyses (see below for details).

For each species in each grid cell (i.e. for all species-grid cell com-
binations), we estimated the start (‘onset’: 5th percentile of calling), 
middle (‘median’: 50th percentile) and end (‘offset’: 95th percentile) 
of the breeding season (nth day of year) using the R package ‘phe-
nesse’ (Belitz, Campbell, & Li,  2020). The phenesse estimator is a 
Weibull-parameterized estimator, generating robust phenological 
estimates for any percentile of a distribution from sparsely sampled 
presence-only data (Belitz, Larsen, et al., 2020). Our minimum sam-
ple size of 20 observations was conservative given reliable and accu-
rate estimates can be obtained using as few as 10 observations (see 
Figures S1–S4; Belitz, Larsen, et al., 2020). Onset and offset were 
defined as the 5th and 95th percentiles of calling, respectively, as 
these can be estimated with greater accuracy than the absolute start 
or end of the breeding season (Belitz, Larsen, et al., 2020). We also 
estimated the duration of the breeding season within each grid cell, 
calculated as the number of days between these defined onset and 
offset days.

Since many species bred throughout December and January 
(summer), we could not use actual nth day of year as measures 
for the onset, median and offset of the breeding season because 

F I G U R E  1  Locations of analysed grid cells across Australia where there were breeding season estimates (onset, offset, median 
and duration) for least one frog species, and their corresponding global human modification index (GHM; 0 [no modification]—1 [high 
modification]), with inset maps (a–f) of enlarged grid cells (each 0.1 × 0.1 decimal degrees in size; approximately 11.1 × 11.1 km).
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it resulted in discontinuities between nth day 366 (31 December) 
and nth day 1 (1 January) in statistical models. For example, 
for the tusked frog (Adelotus brevis), the middle (median) of the 
breeding season occurred between nth day 285 (October) and 
day 52 (February), depending on the grid cell. Since we needed to 
recognize days 1–52 (January–February) as a continuation from 
days 285 to 366 (October–December) for linear modelling, we set 
day 1 to be a day in the middle of each species' non-breeding 
period and calculated the nth day of year of the onset, median 
and offset of the breeding season relative to this. For example, 
for A. brevis, which typically bred from June to April, day 1 was 
set to early May (day 122; 1 January was originally considered 
day 1). After this adjustment, the median day of year of breeding 
occurred between days 163 and 296 (cf days 285–52), eliminating 
discontinuities.

For some species-grid cell combinations, the breeding duration 
was estimated to be more than 366 days (110/2863, 3.8%). We set 
these values to 366 to represent year-round breeding, obviously 
excluding onset, median and offset estimates. Furthermore, some 
offset estimates could not be accurately determined (i.e. offset 
was estimated to occur on nth day of year >366, outside of the 
expected range: days 1–366) and were therefore removed (few 
species with extended breeding seasons, e.g. Crinia signifera, Litoria 
ewingii and Litoria verreauxii). To test the sensitivity of our results 
across grid sizes, we repeated all analyses using grid cells per 0.25 
and 0.05 degrees of latitude and longitude (approximately 27.8 and 
5.6 km, respectively). As the results were similar across all grid sizes 
(see Tables  S2 and S3), we only present results from 0.1-degree 
grid cells.

2.3  |  Call characteristics

To explore whether call characteristics changed along an anthro-
pogenic modification gradient, we selected three frog species for 
acoustic analyses—the Striped Marsh Frog (Limnodynastes pero-
nii), Peron's Tree Frog (Litoria peronii) and Green Tree Frog (Litoria 
caerulea)—according to the following criteria: (1) large number of 
recordings available for analyses, (2) recordings were distributed 
across a large geographical area to allow spatially broad analy-
ses and (3) recordings were available from both anthropogenically 
modified and relatively unmodified habitats to allow exploration 
of relationships between calling and habitat modification. We ran-
domly selected 300 FrogID recordings for each species, excluding 
recordings submitted from the same location on the same or suc-
cessive nights to reduce non-independent data. We used Google 
Earth Engine (Gorelick et al., 2017) and the latitude and longitude 
of each recording to calculate the intensity of habitat modification 
at each recording location. We used the same GHM index used in 
the breeding phenology analyses, but rather than calculating aver-
age values within grid cells, we calculated the average GHM index 
within a 1 km buffer of each recording location, given susceptibility 
of frogs to nearby anthropogenic disturbances (e.g. roads; Villaseñor 

et al., 2017). To ensure the buffer encompassed the survey site, we 
removed recordings with location accuracy >1 km.

For acoustic analyses, recordings were converted from AAC to 
WAV format (sampling rate of 44.1  kHz with 16 bits per sample) 
using a VLC Media Player (http://www.video​lan.org/). We removed 
recordings from analyses if calls of individual frogs could not be iden-
tified due to background noise or multiple overlapping calls of differ-
ent individuals. We then determined the call duration, call repetition 
rate, intercall interval, calling effort and call dominant frequency (see 
Table 1 for definitions of call variables; Köhler et al., 2017) from each 
recording, using Raven Pro 1.5.0 with a time resolution of 5.8 ms and 
a frequency resolution of 86.1 Hz (Hann window; FFT length = 512). 
For Lit. peronii, which has a more complex call consisting of a series 
of notes (rather than a single note, as in Lim. peronii and L. caerulea; 
Figure 2), we also counted number of notes per call and quantified 
note repetition rate.

In each recording, we measured all the calls of a single individual 
(3–34 calls [mean ± SD in parentheses; 14 ± 7] per recording of Lim. 
peronii; 1–24 calls [5 ± 4] per recording of Lit. peronii and 5–107 calls 
[38 ± 20] per recording of L. caerulea) and used the average values for 
each individual for subsequent statistical analyses (i.e. individuals as 
the unit of replication; Köhler et al., 2017). Some call variables could 
not be measured in all recordings. For example, we retained record-
ings containing a single high-quality (e.g. high amplitude) Lit. peronii 
call (n = 13) to calculate call duration, call dominant frequency, notes 
per call and note repetition rate, but not call repetition rate, intercall 
interval or calling effort because calculating these variables required 
a minimum of two calls per recording.

Frog calls can be influenced by environmental temperature 
(Köhler et al., 2017) and so we estimated the temperature at the time 
of recording (to the nearest hour). We obtained the daily minimum 
and maximum temperatures from the nearest weather station, ex-
tracting the data using the ‘bomrang’ package (Sparks et al., 2020) in 
R. We used the ‘chillR’ package (Luedeling, 2019) to interpolate any 
missing daily temperature records (using the minimum and maximum 
temperatures in the 15 days before and after the date of recording) 
and to generate an hourly temperature record (from daily minimum 
and maximum temperatures) (Mitchell et al., 2020).

2.4  |  Statistical analyses

We used timing of breeding seasons and call characteristics of 
the different frog species as response variables in our models. 
To examine whether frog breeding phenology was related to 
anthropogenic habitat modification, we used linear mixed-effects 
models with the phenological estimate (duration of the calling 
season in days, or the nth day of year of the onset, median or offset 
of the calling period) as the response variable and modification 
intensity (GHM index) as the predictor variable. We included the 
grid cell (grid ID) and species as random intercept terms, with a 
random slope for the effect of modification on each species. All 
analyses were performed in R version 3.6.2 (R Core Team, 2019). 

http://www.videolan.org/
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Models were fitted using the ‘lme4’ package (Bates et al., 2015) and 
p-values were calculated using the ‘lmerTest’ package (Kuznetsova 
et al., 2017). Normal quantile and residual plots of the models did 
not reveal noticeable deviations from model assumptions. To test 
for effects of sampling biases (e.g. more records in more modified 
areas), we randomly subsampled the data so that grid cells had the 
same number of observations and reran the models. Results were 
essentially unchanged (Table S1), indicating that sampling bias did 
not explain the results.

To examine the relationships between call characteristics and 
the anthropogenic modification gradient, we fitted a generalized 
additive model for each call variable (Table 1) for each species. The 
call variable was the response variable and the GHM index was the 
predictor variable. Day of year, geographical location (latitude and 
longitude) and temperature were added into the model as smoother 
covariates given their influence on frog calling (Mitchell et al., 2020). 
Correlations between model predictors were minimal (Figure S13). 
Data were normally distributed or otherwise log-transformed (see 
Table 4).

Recognizing that the GHM index represents cumulative human 
stressors, we separately analysed two components of modifi-
cation, urbanization and agriculture, to better understand their 
relative impacts on breeding phenology and call variables (see 
Materials S1). We repeated the statistical analyses with VIIRS 
night-time light (Elvidge et al., 2017; Mills et al., 2013) and cropland 
extent data (Global Food-Support Analysis Data Cropland Extent; 
Teluguntla et al.,  2015), respectively, as the predictor variables. 
Analyses performed using the urbanization index and the GHM 
index revealed very similar results, indicating that trends observed 
along the modification gradient can at least be attributed to urban 
impacts (Tables S4 and S6; Figure S9).

3  |  RESULTS

3.1  |  Breeding phenology

We analysed 42 species (17% of Australia's frog species), meeting 
the minimum criteria (see methods), representing 226,820 
observations from 872 unique grid cells. Each species had at 
least 419 total observations; each species-grid cell combination 
had 79 ± 158 (mean ± SD) observations. Results were consistent, 
regardless of grid cell size (see Tables  S2 and S3). The duration 
of the calling season was significantly positively related to 
increasing habitat modification (Table  2). Calling seasons were 
22.9 ± 8.25 days (SE) longer in the most highly modified areas 
(170.7 days; GHM = 1), compared to unmodified areas (147.8 days; 
GHM  =  0; Figure  3a). All 42 species increased the duration of 
their calling season with increasing anthropogenic modification 
(Figure  4a). The Western Banjo Frog (Limnodynastes dorsalis) 
increased its calling season duration the most, with a 33.7-day 
difference between the most highly modified and unmodified 
regions. Conversely, the Eastern Banjo Frog (Limnodynastes 
dumerilii) had the shortest increase in calling season duration, with 
an 11.6-day difference between the most highly modified and 
unmodified regions.

Frogs started calling significantly earlier (earlier onset of calling 
season) with increasing anthropogenic habitat modification (Table 2; 
Figure 3b), resulting in these longer calling seasons. Of the 42 spe-
cies examined, 40 species (95%) started calling earlier (Figure  4b, 
blue points, negative values), but two species started calling slightly 
later (Figure 4b, blue points, positive values) with increasing habitat 
modification. Litoria rothii had the largest trend towards earlier call-
ing seasons (62.3 days earlier) while Heleioporus eyrei had the largest 

Call characteristic Definition and response variable used in analysis

Call duration The duration (s) of a single call; measured from the start to the 
end of the call (a distinct vocalization, separated from other 
calls by silent intervals that are usually much longer than the 
call)

Call repetition rate The ratio of the number of calls to the duration in which the calls 
were made; given as the number of calls per minute

Intercall interval The interval (s) between two consecutive calls; measured from 
the end of the call to the start of the next call

Calling effort The proportion of calling within a signalling period. The ratio of 
the call duration to the call period (call duration plus intercall 
duration)

Call dominant frequency The frequency (Hz) of the call that contains the greatest sound 
energy

Notes per call The number of notes (the main subunit of a call) in one call. 
Calls can consist of one note (e.g. Limnodynastes peronii and 
Litoria caerulea) or multiple notes (in which 100% amplitude 
modulation occurs between notes, but this interval is short 
relative to the call duration; e.g. Lit. peronii)

Note repetition rate The number of notes per second within a call, calculated as the 
ratio of the number of notes to the duration in which the 
notes were made

TA B L E  1  Definitions of frog call 
variables (Köhler et al., 2017), quantified 
from Australia-wide audio recordings 
submitted to the FrogID project, which 
were independently used in analyses to 
test their relationships to anthropogenic 
habitat modification
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trend towards later calling seasons (3.8 days later) with increasing 
habitat modification. The middle of the calling season (median day of 
calling) was also significantly associated with the intensity of habitat 
modification (Table 2), occurring earlier with increasing modification 
for most species (41/42, 98%). On average, the middle of the calling 

season occurred 18.9 days earlier in the most highly modified, com-
pared to unmodified, areas (Table 2; Figure 3c). Unlike the start and 
middle of the breeding season, the end (offset) of the calling season 
was unrelated to the intensity of anthropogenic habitat modification, 
varying among species (Table 2). As modification levels increased, 

F I G U R E  2  Examples of spectrograms (top; showing the frequency [Hz] and amplitude [dB] of sound over time) and oscillograms (bottom; 
showing relative changes in amplitude over time) of single calls of (a) Limnodynastes peronii; (b) Litoria caerulea and (c) Litoria peronii, with 
coloured lines below oscillograms indicating call duration. Calls of Limnodynastes peronii and L. caerulea consist of a single note. Calls of 
L. peronii consists of a series of notes; a single note is highlighted in the blue rectangle.

Response 
variable Term Estimate SE p N

Duration Intercept 147.773 8.653 <0.001 2863

GHM 22.904 8.251 0.008

Onset Intercept 128.547 4.299 <0.001 2753

GHM −31.711 6.402 <0.001

Median Intercept 204.75 3.705 <0.001 2753

GHM −18.918 4.925 <0.001

Offset Intercept 267.003 5.196 <0.001 2514

GHM 3.142 5.611 0.578

TA B L E  2  Results of linear mixed-
effects models examining the 
relationships between anthropogenic 
habitat modification (global human 
modification index, GHM) and breeding 
phenology (duration of the calling season 
in days; start of the calling season [onset; 
5th percentile; day of year, DOY]; median 
DOY of calling [50th percentile]; and 
end of the calling season [offset; 95th 
percentile; DOY]), with sample size (N), 
and significance at p < .05 in bold
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calling seasons ended earlier for 17 species (40%; Figure  4b, red 
points, negative values) but later for 25 species (Figures 3d and 4b,  
red points, positive values).

3.2 | Call characteristics

We quantified call variables from 441 recordings (131 Lim. peronii, 
171 L. caerulea and 139 Lit. peronii). They were all highly variable 
within each species (Table  3; Figure  S14). However, none of the 
measured call variables were related to the intensity of anthropo-
genic habitat modification (Table  4 and Table  S8). Some call vari-
ables were associated with air temperature, geographical location 
(latitude and longitude) or day of year, but this varied among spe-
cies, with no consistency. For Lim. peronii, the call duration and call-
ing effort varied significantly with temperature, while call duration 
also varied significantly with location (Table 4). For L. caerulea, call 
repetition rate, intercall interval and call dominant frequency were 
significantly related to geographical location, whereas call duration, 
repetition rate and intercall interval varied significantly with tem-
perature (Table 4). The duration of Lit. peronii calls, the mean number 

of notes per call and note repetition rate varied significantly with 
day of year; dominant frequency and note repetition rate varied 
with location; and note repetition rate was additionally significantly 
associated with temperature (Table 4).

4  |  DISCUSSION

Our multispecies continental-scale study showed large-scale 
changes in frog breeding phenology, surprisingly consistent 
across all 42 species examined, along an anthropogenic modifica-
tion gradient. Where humans have highly modified habitats with 
buildings, roads, lights and other stressors (Kennedy et al., 2019), 
frogs had extended breeding seasons compared to less modified 
areas, primarily because they bred earlier (Table 2 and Figure 4). 
The phenological trends—significantly earlier start and middle, 
but no significant change to the end, of the breeding season with 
increasing habitat modification (Figure 3)—highlight complex en-
vironmental cueing of breeding phenology. Frog call characteris-
tics were unrelated to habitat modification (Table 4), but the large 
variation in calls (Table 3) could potentially represent behavioural 

F I G U R E  3  Predictions from linear modelling (with 95% confidence intervals) relating frog breeding phenology (a) duration of the 
calling season; (b) start of calling season (5th percentile; day of year, DOY); (c) median DOY of calling (50th percentile); (d) end of calling 
season (95th percentile; DOY) to the global human modification index (0 (no modification)—1 (high modification); 0.1-degree grid cells, 
approximately 11.1 km × 11.1 km).
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flexibility that is important for keeping up with anthropogenic 
changes. These behavioural responses could have important eco-
logical implications.

4.1  |  Breeding phenology

Amphibian breeding seasons are highly labile compared to other 
animal and plant taxa (Parmesan, 2007). Amphibians can breed a 
month or more earlier every decade with climate change and even 
average rates of change can be more than double that of other 
taxa (Parmesan,  2007; Todd et al.,  2011; While & Uller,  2014). 
Similarly, our study showed that frog breeding season durations 

differed by as many as 33.7 days (average 22.9 days; Table  2) 
along an anthropogenic modification gradient. The consistency of 
response was unexpected, given the diversity of phenological re-
sponses among amphibians, even when relatively few species are 
examined (Parmesan, 2007; Todd et al., 2011). They highlight the 
potential far-reaching impacts of the Anthropocene on communi-
ties of organisms. They also align with increasing understanding 
of the effects of urbanization on breeding phenology, where there 
is earlier breeding or mating of plants (Neil & Wu,  2006), birds 
(Møller et al.,  2015), ants (Chick et al.,  2019; Hart et al.,  2018) 
and mosquitoes (Townroe & Callaghan, 2014), compared to non-
urban habitats (but see Fisogni et al., 2020). This can be coupled 
with extended breeding seasons (e.g. Møller et al., 2015 and this 

F I G U R E  4  Differences in days from the value expected under null hypothesis (0, i.e. no relationship between breeding phenology 
and intensity of anthropogenic habitat modification) in (a) duration (black) and (b) onset (blue) and offset (red) of the breeding season for 
each species, along an (increasing) global human modification index (anthropogenic modification gradient; 0 [no modification]—1 [high 
modification]).
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study), but in some plants, extended breeding has been linked to 
a later end (rather than an earlier start) to the breeding season (Li 
et al.,  2021). Environmental cues are variously affecting repro-
duction of different species in urban environments.

We speculate that many different confounding and interacting 
factors could be contributing to these phenological changes, in-
cluding temperature, rainfall and hydrology (Diamond et al., 2014; 
Li et al.,  2019). Though the modification (GHM) index reflects 

TA B L E  3  Summary statistics (mean, standard deviation, minimum values, maximum values and sample size) for each of the seven call 
variables in relation to the three frog species analysed

Call variable Species Mean ± SD Minimum Maximum N

Call duration (s) Lim. peronii 0.065 ± 0.037 0.016 0.205 131

L. caerulea 0.255 ± 0.059 0.123 0.449 170

Lit. peronii 1.752 ± 0.620 0.342 5.542 139

Call repetition rate (calls/min) Lim. peronii 17.980 ± 8.062 0.486 48.211 131

L. caerulea 106.296 ± 25.669 16.044 183.214 171

Lit. peronii 7.803 ± 5.602 1.598 32.304 127

Intercall interval (s) Lim. peronii 3.945 ± 2.536 1.122 22.294 131

L. caerulea 0.361 ± 0.288 0.095 3.460 170

Lit. peronii 9.846 ± 7.171 0.501 35.542 126

Calling effort (call duration/call period) Lim. peronii 0.022 ± 0.017 0.003 0.107 131

L. caerulea 0.463 ± 0.096 0.259 0.774 170

Lit. peronii 0.226 ± 0.140 0.041 0.740 125

Dominant frequency (Hz) Lim. peronii 1007.456 ± 326.733 339.119 1948.775 131

L. caerulea 900.858 ± 378.016 362.969 1741.811 170

Lit. peronii 1862.490 ± 214.467 1248.950 3014.650 139

Notes per call Lit. peronii 28.469 ± 9.959 3.333 83.000 120

Note repetition rate (notes/s) Lit. peronii 16.473 ± 3.854 6.851 27.154 120

Call variable Species
GHM 
index

Day of 
year

Location 
(latitude, 
longitude)

Hourly 
temp N

Call duration Lim. peronii 0.569 0.081 0.049 0.002 102

L. caerulea 0.721 0.224 0.203 <0.001 157

Lit. peronii 0.290 0.015 0.440 0.465 110

Call repetition rate Lim. peronii 0.718 0.247 0.470 0.061 102

L. caerulea 0.130 0.496 0.003 <0.001 158

Lit. peronii* 0.149 0.265 0.078 0.341 98

Intercall interval Lim. peronii* 0.659 0.124 0.163 0.067 102

L. caerulea* 0.229 0.812 0.015 0.002 157

Lit. peronii* 0.147 0.549 0.699 0.276 97

Calling effort Lim. peronii* 0.184 0.154 0.176 0.006 102

L. caerulea* 0.144 0.512 0.164 0.415 157

Lit. peronii* 0.205 0.771 0.872 0.439 96

Dominant frequency Lim. peronii 0.414 0.397 0.462 0.406 102

L. caerulea 0.415 0.440 <0.001 0.656 157

Lit. peronii 0.336 0.126 <0.001 0.492 110

Notes per call Lit. peronii 0.313 0.002 0.176 0.133 96

Note repetition rate Lit. peronii 0.578 0.010 0.002 <0.001 96

Note: N represents sample size. See Table S8 for detailed model outputs.

TA B L E  4  Statistical output  
(p-values, significance at p < .05 in bold) 
of generalized additive models examining 
relationships between call variables 
(*indicates log-transformed variables) and 
anthropogenic habitat modification (global 
human modification index, GHM), day of 
year, location, and temperature for the 
three frog species analysed
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multiple human stressors, urban factors were likely important 
drivers of frog responses (Table S4 and Figure S9). Increasing tem-
peratures are occurring with climate change and urban heat island 
(UHI) effects, contributing to earlier reproductive phenology in var-
ious taxa (plants, Neil & Wu, 2006; vertebrates and invertebrates, 
Parmesan,  2007). The combination of UHI effects and climate 
change may also be driving earlier breeding phenology for some frog 
species, as temperature can be an important cue for the initiation 
of breeding—emergence from overwintering sites, and commence-
ment of breeding migrations and oviposition (Arietta et al., 2020; 
Gibbs & Breisch, 2001; Reading, 1998). A temporal analysis of frog 
reproduction in low modified and highly modified areas might show 
a shift with climate change. However, increasing temperature does 
not explain why autumn- and winter-breeding species (where in-
creasing temperature presumably does not cue breeding, e.g. Crinia 
georgiana, Crinia insignifera, Geocrinia leai) exhibited earlier and lon-
ger (rather than shorter or unchanged) breeding seasons in modi-
fied areas (Figure 4).

Altered hydrology in modified environments, including increased 
runoff and flooding caused by large areas of impervious surfaces, and 
more extreme rainfall events (Pathirana et al., 2014), may also influ-
ence frog breeding phenology via effects on hydroperiods and stream 
flow (Hamer & McDonnell,  2008; Todd et al.,  2011). Stormwater 
management and direct alteration of waterbodies (e.g. filling and 
draining) can change hydroperiods (Hamer & McDonnell,  2008), 
with urban areas generally supporting permanent waterbodies with 
relatively few temporary ponds (Oertli & Parris,  2019); this could 
affect timing of breeding for aquatic-breeding frogs. Indeed, most 
of the examined species typically breed in permanent water bodies 
(8/42; 19%) or a combination of permanent and ephemeral water-
bodies (26/42; 62%; Liu et al., 2021; Murray et al., 2011). Year-round 
presence of suitable breeding habitat may stimulate these species to 
extend their breeding period. Similarly, changes to vegetation and 
soil type in anthropogenically modified environments may affect soil 
water potential and consequently alter breeding periods of terres-
trial frogs (Hoffmann & Mitchell, 2021).

However, climate is probably not the only factor, given that urban-
ization drives bird (Møller, 2009) and plant (Li et al., 2021) breeding 
phenology after accounting for climate. Artificial lights can disrupt the 
photoperiod or lunar-related cues for frog breeding (Arietta et al., 2020; 
Grant et al., 2009). Environmental pollutants (including artificial lights) 
can also affect endogenous variables, such as reproductive hormones 
and stress levels (Forsburg et al., 2021), disrupting breeding behaviours 
(Gorissen et al., 2005; Hayes et al., 2010; Yamaguchi & Kelley, 2003). 
However, this explanation seems incongruous with our observed 
phenological trends (i.e. earlier and extended breeding). Increased 
resources in urban (compared to rural) landscapes are another pos-
sible driver of earlier and longer breeding seasons in anthropogeni-
cally modified areas, enabling species to maintain energy reserves and 
body condition for breeding for longer (Hoffmann & Mitchell, 2021; 
McCauley et al., 2000; Møller et al., 2015).

More research into the relative importance of environmen-
tal variables is needed but, given the end of breeding seasons was 

unrelated to habitat modification (Table 2 and Figure 3), it is plausi-
ble that frogs are sensitive to different cues throughout the season 
(Grant et al., 2009). Environmental cues may strongly determine the 
start and peak of breeding, but the end of breeding may be less la-
bile. Additionally, different species' breeding seasons may be vari-
ably constrained by these cues. Though all examined species had 
extended breeding seasons and most started breeding earlier in 
modified areas (Figure 4), the drivers behind specific phenological 
patterns, such as the relative magnitude of species' trends, are un-
clear. Exploring relationships between species' phenological trends 
and their ecological, physiological and behavioural traits may help to 
identify important drivers.

A key question is whether these changes can help species cope in 
modified landscapes. Earlier and extended breeding seasons can ben-
efit frogs. Earlier breeding typically results in earlier metamorphosis, 
larger body size at autumn and, ultimately, improved overwintering 
survival and larger clutches (Altwegg & Reyer, 2003; Loman, 2009), 
while extended breeding seasons can create additional breeding op-
portunities (Juncá & Rodrigues, 2006). Frogs may be breeding earlier 
in modified habitats to capitalize on higher quality or more abundant 
food (Loman,  2009); they may be tracking shifts in insect phenol-
ogy observed in urban areas (Hart et al., 2018), given their depen-
dence on insects (Le et al., 2020). Phenological flexibility may be an 
important determinant of persistence in anthropogenically modified 
environments (Belitz et al., 2021). Breeding when resources and en-
vironmental conditions are not conducive to reproduction can cause 
failed reproduction, high larval mortality, increased competition and 
predation among sympatric species and, in more extreme cases, 
population declines and local extinctions (Klaus & Lougheed, 2013; 
Mayor et al., 2017; Todd et al., 2011). Phenological mismatches have 
occurred between migratory birds and their food resources (Mayor 
et al., 2017; Wanless et al., 2009), and plants and their insect pollina-
tors (Hegland et al., 2009; Kudo & Ida, 2013). However, knowledge 
of whether similar mismatches are occurring among frogs, whether 
phenological changes can compensate for these and the conse-
quences of altered frog phenology, remains limited.

Phenological changes are not necessarily adaptive. First, they did 
not seem to be related to the relative tolerance of individual species 
to anthropogenically modified habitats (Liu et al., 2021). For exam-
ple, the responses of tolerant species such as Litoria infrafrenata and 
Litoria moorei were similar to less tolerant species such as Geocrinia 
leai and Uperoleia laevigata (Figure 4; Liu et al., 2021). Second, earlier 
breeding can decrease juvenile survival in cold climates as earlier 
laid eggs can be more susceptible to freezing and can take longer 
to develop (Loman, 2009), increasing the risk of predation (Chivers 
et al.,  2001). Furthermore, if anthropogenically modified habitats 
function as ecological traps (i.e. species show a preference for hab-
itats that reduce fitness), negatively impacting offspring survival 
and growth (Sievers et al., 2018), then changing breeding phenology 
may have no fitness benefits. Given the energetic costs of calling 
and increased risk of predation (Lemckert & Shine,  1993; Sullivan 
& Kwiatkowski, 2007), longer calling seasons in modified environ-
ments could even be maladaptive, representing wasted efforts.
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4.2  |  Call characteristics

Contrasting the strong phenological trends, there was no consistent 
pattern in the temporal or spectral properties of frog calls along an 
anthropogenic modification gradient (Table 4 and Figure S14). Our 
findings contradicted local and regional studies showing different 
bird call spectral properties between urban and rural populations 
(Mockford & Marshall,  2009) and changes to frog call character-
istics with traffic noise (Cunnington & Fahrig,  2010; Hoskin & 
Goosem,  2010; Parris et al.,  2009). However, they were consist-
ent with a continental-scale acoustic assessment of red tree frogs 
(Litoria rubella), where calls were similarly variable and unrelated 
to an urbanization gradient (Mitchell et al.,  2020). While we used 
a common dataset (audio recordings from the FrogID project), our 
findings were derived independently following standard acoustic 
analysis protocols. Together, they suggest that acoustic changes are 
not detectable at large scales when multiple anthropogenic stressors 
are examined simultaneously, possibly because calls exhibit plastic-
ity in response to local noisy conditions (Cunnington & Fahrig, 2010) 
which are not consistent across broad scales (along large modifica-
tion gradients). The type of modification may also be important. If 
anthropogenic noise is an important driver of acoustic changes, then 
calling patterns may emerge along an urbanization gradient, but not 
along a gradient of increasing agricultural modification. However, we 
examined whether call variables changed along urban and agricul-
tural gradients (Tables S6 and S7) and found no consistent responses 
along either gradient, suggesting that broad-scale changes to habitat 
modification are unlikely in the examined species.

Alternatively, population-level shifts in call characteristics may 
be occurring but developing slowly (Parris et al., 2009); frogs may 
be changing call characteristics not measured here (e.g. amplitude; 
Halfwerk et al.,  2015; but see Love & Bee,  2010); or broad-scale 
acoustic changes may be occurring among some, but not all species 
(Cunnington & Fahrig, 2010; Roca et al., 2016). Like Litoria rubella, 
our three analysed species are relatively tolerant of anthropogeni-
cally modified habitats (Liu et al., 2021) and may not be representa-
tive of all species. High variability within these species' calls (Table 3 
and Figure S14; Weaver et al., 2020) may reflect their behavioural 
flexibility, which potentially contributes to their success in variably 
modified landscapes (Mitchell et al., 2020). However, some of this 
variability may be driven by environmental variables such as tem-
perature (Mitchell et al., 2020; Parris et al., 2009). The role of call 
variability in breeding success in modified environments remains 
largely untested, providing opportunities to explore in both urban 
and non-urban adapted frogs.

5  |  CONCLUSIONS

Humans are rapidly changing the planet in the Anthropocene, with 
significant ecological and evolutionary consequences. Understanding 
how these changes affect different species, across different life-
history stages, remains important in predicting ecological and 

conservation ramifications. Our continental-scale citizen science 
data allowed us to examine these changes across a large suite of frog 
species, revealing consistent associations between phenology and 
anthropogenic habitat modification. The causes and long-term con-
sequences remain unknown but are likely to be important. There is an 
opportunity to extend our understanding of the role of environmen-
tal variables in breeding phenology, and to assess the fitness con-
sequences of phenological change by examining fecundity, breeding 
success and survival of frogs in modified habitats. Nonetheless, our 
research provides an important first look into frog breeding phenol-
ogy along an anthropogenic modification gradient.
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